
Lec 1: Introduction to Optimization

Preview
43 min

Lec 2: Classical Optimization

Lec 3: Introduction to Linear Problem

Lec 4: General system of equations

Lec 5: Simplex Method

Lec 6: Solution of Linear Problem using Excel Solver

Lec 7: Bracketing Method

Lec 8: Region Elimination Methods

Lec 9: Gradient Based Method and Examples

Lec 10: Convex Function

Lec 11: Line Search Methods for Multi-Variable Problems

Lec 12: Quadratic Approximation Method

Lec 13: Constrained Optimization I: Equality constraints

Lec 14: Constrained Optimization II:Inequality constraints

Lec 15: Constrained Optimization III: Penalty function methods

Lec 16: Introduction to Metaheuristic Optimization

Lec 17: Genetic Algorithms (Part I)

Lec 18: Genetic Algorithms (Part II)

Lec 19: Genetic Algorithms (Part III)

Lec 20: Real Coded Genetic Algorithms

Lec 21: Multi-modal optimization

Lec 22: Introductioin to R

Lec 23: GA using R (Unconstrained problem)

Lec 24: GA using R (Constrained problem)

Lec 25: Constraint Handling in GAs

Lec 26: Evolution Strategies (ESs)

Lec 27: Particle swarm optimization

Lec 28: Introduction to R (Part II)

Lec 29: Multi-objective Genetic Algorithms

Lec 30: Introduction to Differential Evolution

Lec 31: Introduction to Matlab

Lec 32: Optimization using Matlab (Classical methods)

Lec 33: A tutorial on Differential Evolution

Lec 34: NSGA II Using R

Lec 35: Optimization using MATLAB

Lec 36: Optimization using Excel Solver

Lec 37: Multi-objective Genetic Algorithms using MATLAB

Lec 38: Solution of a Design Problem Using MATLAB